INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 3, NO. 1, FEBRUARY 2017 27

Sequence Alignment Using Nature-Inspired
Metaheuristic Algorithms

Muhammad Luthfi Shahab and Mohammad Isa Irawan

Abstract—The most basic process in sequence analysis is
sequence alignment, usually solved by dynamic programming
Needleman-Wunsch algorithm. However, Needleman-Wunsch al-
gorithm has some lack when the length of the sequence which
is aligned is big enough. Because of that, sequence alignment
is solved by metaheuristic algorithms. In the present, there
are a lot of new metaheuristic algorithms based on natural
behavior of some species, we usually call them as nature-inspired
metaheuristic algorithms. Some of those algorithm that are
more efficient are firefly algorithm, cuckoo search, and flower
pollination algorithm. In this research, we use those algorithms to
solve sequence alignment. The results show that those algorithms
can be used to solve sequence alignment with good result and
linear time computation.

Index Terms—Nature-inspired metaheuristic algorithms, se-
quence alignment.

I. INTRODUCTION

EW DNA, RNA and protein sequences usually develop

from pre-existing sequences rather than get invented
by nature from scratch. This fact is the foundation of any
sequence analysis [1], [2]. And the most basic process in se-
quence analysis is sequence alignment, and usually solved by
dynamic programming Needleman-Wunsch algorithm. How-
ever, Needleman-Wunsch algorithm needs a lot of memories
when the length of the sequence which is aligned is big
enough.

Calculation of the dynamic programming matrices for a
pair of sequences takes a substantial amount of time and
memory. However, as we have seen, the areas of interest
in these matrices (that is, the areas formed by the cells
that take part in a traceback procedure) are minuscule in
comparison to the entire areas of the matrices. The FASTA
algorithm is designed to limit the areas of the matrices that
the dynamic programming examines. But FASTA can miss
optimal alignments [1].

In the present, there are a lot of new metaheuristic algo-
rithms based on natural behavior of some species, we usually
call them as nature-inspired metaheuristic algorithms. Those
algorithms can be used to solve many problems. Earlier algo-
rithms in nature-inspired metaheuristic algorithms are genetic
algorithm, ant algorithm, particle swarm optimization, and
another.

Nature-inspired metaheuristic algorithms, especially those
based on swarm intelligence, have attracted much attention in
the last ten years. Firefly algorithm, developed in 2008, cuckoo

Manuscript received February 3, 2017; accepted February 22, 2017.

The authors are with the Department of Mathematics, Institut
Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia. Email:
shahab.luthfi@gmail.com, mii@its.ac.id

search, developed in 2009, and flower pollination algorithm,
developed in 2012 [3].

Firefly algorithmis based on the flashing patterns and behav-
ior of fireflies. Cuckoo search is based on the brood parasitism
of some cuckoo species. And flower pollination algorithm is
based on the pollination process of flowering plant. For an
optimization problem, those algorithms are more efficient than
earlier algorithms [3]. However, those algorithms not yet used
to solve sequence alignment problem.

In this research, we will use firefly algorithm, cuckoo search,
and flower pollination algorithm to do sequence alignment.

II. LITERATURE REVIEW
A. Sequence Alignment

When sequences evolve starting from a common ancestor,
their residues can undergo substitutions (when residues are
replaced by some other residues). Apart from substitutions,
during the course of evolution sequences can accumulate a
number of events of two more types: insertions (when new
residues appear in a sequence in addition to the existing ones)
and deletions (when some residues disappear). Therefore,
when one is trying to produce the best possible alignment
between two sequences, residues must be allowed to be aligned
not only to other residues but also to gaps. The presence
of a gap in an alignment represents either an insertion or
deletion event. Consider, for example, the following two short
nucleotide sequences, each consisting of only seven residues

x : TACCAGT W
y: CCCGTAA

The sequences are of the same length, and there is only one
way to align them, if one does not allow gaps in alignments

x: TACCAGT)
y: CCCGTAA.

However, if we allow gaps, there are many possible align-
ments. In particular, the following alignment seems to be much
more informative than the preceding one

x: TACCAGT — — (3)
y:——CCCGTAA.

The most popular scoring schemes assume independence
among the columns in an alignment and set the total score
of the alignment to be equal to the sum of the scores of
each column. Therefore, for such schemes one only needs
to specify the scores s(a,b) = s(b,a) and the gap penalty
s(—,a) = s(a,—), with a,b € Q, where Q =A,C,G,T [1].

28 INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 3, NO. 1, FEBRUARY 2017

As an example of a scoring scheme one can set s(a,a) =1
(the score of a match), s(a,b) = —1, if a # b (the score of a
mismatch), and s(—,a) = s(a,—) = —2 (the gap penalty). We
will use this scoring scheme.

B. Needleman-Wunsch Algorithm

Needleman-Wunsch algorithm always finds all optimal
global alignments (there are frequently more than one such
alignments).

The idea is to produce an optimal alignment from optimal
alignments of subsequences. Algorithms that achieve optimiza-
tion by means of performing optimization for smaller amounts
of data (in this case subsequences) are generally called dy-
namic programming algorithms. Suppose we are given two
sequences X = X1X3...X;jXy and y = Yiy2---YjVm- We construct
an (n+1) X (m+1) matrix F. Its (i, j)-th element F (i, j) for
i=1,..,n, j=1,...m is equal to the score of an optimal
alignment between x1x>...x; and y1y>...y;. The element F(i,0)
for i=1,...,n is the score of aligning x;x;...x; to a gap region
of length i. Similarly, the element F (0,) for j=1,---,m is
the score of aligning y1y»...y; to a gap region of length j. We
build F recursively, initializing it by the condition F(0,0) =0
and then proceeding to fill the matrix from the top left corner
to the bottom right corner. If F(i—1,j—1), F(i—1,j) and
F(i,j—1) are known, F (i, j) is clearly calculated as follows

F(li 17]7 1)+S(xl7yj)7
F(i—1,j)—d, (4)
Fi,j—1)—d.

F(i,j) = max

Indeed, there are three possible ways to obtain the best score
F (i,) : x; can be aligned to y; (see the first option in the above
formula), or x; is aligned to a gap (the second option), or y;
is aligned to a gap (the third option).

Calculating F(i,j) we keep a pointer to the option from
which F (i, j) was produced. When we reach F(n,m) we trace
back the pointers to recover optimal alignments. The value
F(n,m) is exactly their score. Note that more than one pointers
may come out of a particular cell of the matrix which results
in several optimal alignments [1].

C. Firefly Algorithm
Firefly algorithm use the following three idealized rules [3]:

« All fireflies are unisex, so one firefly will be attracted to
other fireflies regardless of their sex.

o Attractiveness is proportional to a fireflys brightness.
Thus for any two flashing fireflies, the less brighter one
will move toward the brighter one. The attractiveness is
proportional to the brightness, both of which decrease as
their distance increases. If there is no brighter one than
a particular firefly, it will move randomly.

o The brightness of firefly is affected or determined by the
landscape of the objective function.

For a maximization problem, the brightness can simply be
proportional to the value of the objective function. Based on
these three rules, the basic steps of the firefly algorithm can
be summarized as the pseudo code shown in Fig. 1.

D. Cuckoo Search

Cuckoo search is one of the latest nature-inspired meta-
heuristic algorithms, developed in 2009 by Xin-She Yang and
Suash Deb. Cuckoo search is based on the brood parasitism
of some cuckoo spesies.

Cuckoo search use the following three idealized rules [3]:

o Each cuckoo lays one egg at a time and dumps it in a
randomly chosen nest.

« The best nests with high-quality eggs will be carried over
the next generations.

¢ The number of available host nests is fixed, and the egg
laid by a cuckoo is discovered by the host bird with a
probability p, € (0,1). In this case, the host bird can
either get rid of the egg or simply abandon the nest and
build a completely new nest.

As a further approximation, this last assumption can be
approximated by replacing a fraction p, of the n host nests
(with new random solutions). For a maximization problem, the
quality or fitness of a solution can simply be proportional to
the value of the objective function.

From the implementation point of view, we can use the
following simple representations that each egg in a nest
represents a solution, and each cuckoo can lay only one egg
(thus representing one solution). The aim is to use the new
and potentially better solutions (cuckoos) to replace a not-so-
good solution in the nests. Obviously, this algorithm can be
extended to the more complicated case where each nest has
multiple eggs representing a set of solutions. Here we use the
simplest approach, where each nest has only a single egg. In
this case, there is no distinction between an egg, a nest, or a
cuckoo, since each nest corresponds to one egg, which also
represents one cuckoo.

Based on these three rules, the basic steps of the cuckoo
search can be summarized as the pseudo code shown in Fig.
2.

E. Flower Pollination Algorithm

Flower pollination algorithm use the following three ideal-
ized rules [3]:

« Biotic and cross-pollination can be considered processes
of global pollination.

o For local pollination,
pollination are used.

« Pollinators such as insects can develop flower constancy,
which is equivalent to a reproduction probability that is
proportional to the similarity of two flowers involved.

o The interaction or switching of local pollination and
global pollination can be controlled by a switch prob-
ability p € [0, 1], slightly biased toward local pollination.

abiotic pollination and self-

Based on these four rules, the basic steps of the flower
pollination algorithm can be summarized as the pseudo code
shown in Fig. 3.

SHAHAB et al.: SEQUENCE ALIGNMENT USING NATURE-INSPIRED METAHEURISTIC ALGORITHMS 29

Generate initial population of n fireflies
Define initial attractiveness o
while t < maxGeneration
fori=1:n
for j=1:n
if ; <1 j
Move firefly i towards firefly j
end
Update o
end
end
Rank the fireflies and find the current global best g,
Update ¢
end
Show the results

Fig. 1. Pseudo code of firefly algorithm

Generate initial population of n nests
Find the current best nest g,
Define a probability p, € (0,1)
while ¢ < maxGeneration
Get a nest randomly
Generate a new nest using the global random walk
Evaluate its solution quality or objective value f;
Chose a nest among n (say nest j) randomly
if f; < fj
Replace nest j by the new nest i
end
A fraction p, of worse nests are abandoned
New nests are generated using local random walk
Rank the nests and find the current global best g.
Update ¢
End
Show the results

Fig. 2. Pseudo code of cuckoo search

Generate initial population of n flowers
Find the current best flower g,
Define a switch probability p € [0, 1]
while t < maxGeneration
fori=1:n
if rand < p
Generate new flower using global pollination
else
Generate new flower using local pollination
end
Evaluate the objective value of new flower
if new solution is better
Update flower i by new solution
end
end
Rank the flowers and find the current global best g,
Update t
End
Show the results

Fig. 3. Pseudo code of flower pollination algorithm

III. FIREFLY ALGORITHM, CUCKOO SEARCH, AND
FLOWER POLLINATION ALGORITHM FOR SEQUENCE
ALIGNMENT

A. Solution Representation

Solution representation for firefly algorithm, cuckoo search,
and flower pollination algorithm is the solution of sequence
alignment it self. It means that the solution is the two initial
sequences those are inserted by gap symbols until the length
of the both sequences are equal. This solution representation is
easier to processed and we dont need to do a transformation
from the solution representation to the sequence alignment
solution [4].

B. Generate New Solution

In this paper, we use two schemes to produce new solutions.
In the first scheme, we choose a gap symbol randomly and then
put it to a new place randomly in the same sequence.

In the second scheme, first, we choose two solutions ran-
domly. The first solution is cut straight at some randomly cho-
sen position and the second one is tailored so that the right and
the left pieces of each solution can be joined together while
keeping the original sequence. Any void space that appears at
the junction point is filled with gap symbols. Because of the
specificity of this junction point, where rearrangements can
occur, this operator combines both the traditional properties
of a crossover and those of a local rearrangement mutation

[4].

C. Implementation

The implementation in this research was written in Java
language programming using NetBeans IDE 8.2. For each
case, we do five independent runs and record them, and then
pick the best score as the score of algorithms. And we take
the average time of that five runs.

Firefly algorithm uses 10 solutions and 2000 iterations.
Cuckoo search uses 100 solutions and 1000 iterations. And
flower pollination algorithm uses 100 solutions and 1000
iterations.

D. Some Modifications

In the firefly algorithm, firefly i will move toward firefly
j if firefly j is better than firefly i. We modify it, although
firefly j is not better than firefly i, firefly i will move toward
firefly j. However, that new solution will bi accepted if that
new solution is better than the old one.

In the cuckoo search, global random walk will be accepted
if the new solution is better than the old one. That mecanism
will be replaced by elitism replacement with filtration [4], that
will make all of better solutions are not abandoned. And the
new solution from local random walk will not always replace
the old one. That solution will be accepted if is better than
the old one.

In the flower pollination algorithm, new solution will be
accepted if the new solution is better than the old one.
That mecanism will be replaced by elitism replacement with
filtration.

30 INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 3, NO. 1, FEBRUARY 2017

0.60 l

o/
Yo
S

=
n
=]

=
o
=

=] =
[=] (V3]
(=] [=]

Time Computation (second)

o
—
[

0.00

ST 228883 K5FTESQ

Sequence Length

Fig. 4. Time computation of Needleman-Wunsch Algorithm

e Firefly Algorithm

e Cuck 0O Search

Flower Pollination Algorithm : /

b b

o L

=1 =]
i

[
L
(=)

lme Computation (second)
= (]
L =
o (=]
i

1.00
0.50
O.OOII
= F -3 @05 A B~ > o0 @0 5
— = — — o oo o= o= = o=t

Sequence Length

Fig. 5. Time computation of Firefly Algorithm, Cuckoo Search, and Flower
Pollination Algorithm

IV. RESULTS AND DISCUSSIONS
A. Sequence

We create 50 pairs of sequences as a experimental data. To
create a pair of sequences, first we create a parent sequence
randomly. Then we create the first and second sequence by
take a mutations to the parent sequence. We use 4 types of
mutations [5]. We create pairs of sequences which have length
vary from 10 to 500.

B. The Comparison of Needleman Wunsch Algorithm, Firefly
Algorithm, Cuckoo Search, and Flower Pollination Algorithm

To do an alignment, we create some sequences as an input.
We create pair of sequences which have length vary from 10
to 500.

The score of sequence alignment from Needleman-Wunsch
algorithm, firefly algorithm, cuckoo search, and flower polli-
nation algorithm is showed in Table 1.

From Table 1, we can see that firefly algorithm, cuckoo
search, and flower pollination algorithm can find optimal
solutions of sequence alignment because the score of those

algorithms is equal with the score of Needleman Wunsch
algorithm.

TABLE I
SCORES OF NEEDLEMAN-WUNSCH ALGORITHM, FIREFLY ALGORITHM,
CUCKOO SEARCH, AND FLOWER POLLINATION ALGORITHM

Needleman- Firefly Cuckoo Flower
Wunsch Algorithm Search Pollination
Algorithm Algorithm
3 3 3 3
9 9 9 9
7 7 7 7
16 16 16 16
25 25 25 25
20 20 20 20
30 30 30 30
32 32 32 32
28 28 28 28
44 44 44 44
49 49 49 49
49 49 49 49
57 57 57 57
61 61 61 61
60 60 60 60
59 59 59 59
72 72 72 72
81 81 81 81
82 82 82 82
82 82 82 82
83 83 83 83
100 100 100 100
88 88 88 88
114 114 114 114
114 114 114 114
107 107 107 107
121 121 121 121
119 119 119 119
117 117 117 117
123 123 123 123
132 132 132 132
143 143 143 143
130 130 130 130
138 138 138 138
145 145 145 145
151 151 151 151
160 160 160 160
174 174 174 174
159 159 159 159
182 182 182 182
177 177 177 177
177 177 177 177
205 205 205 205
188 188 188 188
185 185 185 185
194 194 194 194
192 192 192 192
201 201 201 201
219 219 219 219
222 222 222 222

Time computation for Needleman-Wunsch algorithm can be
seen in Fig. 4. We can see that the time computation function
does not follow the linear functions.

The average time computation of firefly algorithm is 1.675
second. The average time computation of cuckoo search is
1.431 second. The average time computation of flower polli-
nation algorithm is 0.876 second. The increase of time com-
putation along with the increase of the sequence length follow
the linear functions. Time computation for firefly algorithm,

SHAHAB et al.: SEQUENCE ALIGNMENT USING NATURE-INSPIRED METAHEURISTIC ALGORITHMS 31

cuckoo search, and flower pollination algorithm can be seen
in Fig. 5.

REFERENCES

[1]1 A. Isaev, Introduction to mathematical methods in bioinformatics.
Springer Science & Business Media, 2006.

[2] M. Shahab, D. Utomo, and M. Irawan, “Decomposing and solving capac-
itated vehicle routing problem (CVRP) using two-step genetic algorithm
(TSGA),” Journal of Theoretical and Applied Information Technology,
vol. 87, no. 3, pp. 461468, 2016.

[3]1 X.-S. Yang, Nature-inspired optimization algorithms. Elsevier, 2014.

[4] C. Notredame and D. Higgins, “Saga: sequence alignment by genetic
algorithm,” Nucleic acids research, vol. 24, no. 8, pp. 1515-1524, 1996.

[5]1 S. Shen, Theory and Mathematical methods in Bioinformatics. Springer
Science & Business Media, 2008.

